广泛的应用需要学习图像生成模型,其潜在空间有效地捕获数据分布中存在的变化的高级别因数。模型代表通过其潜在空间的这种变化的程度可以通过其在平滑图像之间插值的能力来判断。然而,在所生成的图像之前映射固定的大多数生成模型导致插值轨迹缺乏平滑度并且包含降低质量的图像。在这项工作中,我们提出了一种新的生成模型,该模型在插值轨迹之前学习灵活的非参数,调节在一对源图像和目标图像上。而不是依赖确定性的插值方法(例如潜伏空间中的线性或球形插值),我们设计了一种使用潜在二阶神经常规差分方程的两个给定图像之间的轨迹分布的框架。通过重建和对抗性损失的混合组合,发电机训练以从这些轨迹将采样点映射到现实图像的序列,该轨迹的序列是从源进入目标图像的平稳转换。通过综合定性和定量实验,我们展示了我们的方法在生成改进质量的图像方面的有效性以及对任何对任何对实际来源和目标图像的平滑插值轨迹学习多元化分布的能力。
translated by 谷歌翻译
为了帮助现有的Telemental Mechanical服务,我们提出Deeptmh,这是一种通过提取对应于心理学文献经常使用的情感和认知特征的潜视和认知特征来模拟Telemental Mealth Session视频的新框架。我们的方法利用半监督学习的进步来解决Telemental Healts Sessience视频领域的数据稀缺,包括多模式半监督GaN,以检测Telemental卫生课程中的重要心理健康指标。我们展示了我们框架的有用性和与现有工作中的两项任务对比:参与回归和价值回归,这两者都对心理学家在眼药性健康会议期间对心理学家很重要。我们的框架报告了RMSE在参与回归中的RMSE方法的40%,并在价值唤醒回归中的SOTA方法中的50%改善。为了解决Telemental Health空间中公开的数据集的稀缺性,我们发布了一个新的数据集,Medica,用于心理健康患者参与检测。我们的数据集,Medica由1299个视频组成,每节3秒长。据我们所知,我们的方法是基于心理驱动的情感和认知功能来模拟Telemental Healts会话数据的第一种方法,这也通过利用半监督设置来解决数据稀疏性。
translated by 谷歌翻译
Machine Translation (MT) system generally aims at automatic representation of source language into target language retaining the originality of context using various Natural Language Processing (NLP) techniques. Among various NLP methods, Statistical Machine Translation(SMT). SMT uses probabilistic and statistical techniques to analyze information and conversion. This paper canvasses about the development of bilingual SMT models for translating English to fifteen low-resource Indian Languages (ILs) and vice versa. At the outset, all 15 languages are briefed with a short description related to our experimental need. Further, a detailed analysis of Samanantar and OPUS dataset for model building, along with standard benchmark dataset (Flores-200) for fine-tuning and testing, is done as a part of our experiment. Different preprocessing approaches are proposed in this paper to handle the noise of the dataset. To create the system, MOSES open-source SMT toolkit is explored. Distance reordering is utilized with the aim to understand the rules of grammar and context-dependent adjustments through a phrase reordering categorization framework. In our experiment, the quality of the translation is evaluated using standard metrics such as BLEU, METEOR, and RIBES
translated by 谷歌翻译
Several self-supervised representation learning methods have been proposed for reinforcement learning (RL) with rich observations. For real-world applications of RL, recovering underlying latent states is crucial, particularly when sensory inputs contain irrelevant and exogenous information. In this work, we study how information bottlenecks can be used to construct latent states efficiently in the presence of task-irrelevant information. We propose architectures that utilize variational and discrete information bottlenecks, coined as RepDIB, to learn structured factorized representations. Exploiting the expressiveness bought by factorized representations, we introduce a simple, yet effective, bottleneck that can be integrated with any existing self-supervised objective for RL. We demonstrate this across several online and offline RL benchmarks, along with a real robot arm task, where we find that compressed representations with RepDIB can lead to strong performance improvements, as the learned bottlenecks help predict only the relevant state while ignoring irrelevant information.
translated by 谷歌翻译
The devastation caused by the coronavirus pandemic makes it imperative to design automated techniques for a fast and accurate detection. We propose a novel non-invasive tool, using deep learning and imaging, for delineating COVID-19 infection in lungs. The Ensembling Attention-based Multi-scaled Convolution network (EAMC), employing Leave-One-Patient-Out (LOPO) training, exhibits high sensitivity and precision in outlining infected regions along with assessment of severity. The Attention module combines contextual with local information, at multiple scales, for accurate segmentation. Ensemble learning integrates heterogeneity of decision through different base classifiers. The superiority of EAMC, even with severe class imbalance, is established through comparison with existing state-of-the-art learning models over four publicly-available COVID-19 datasets. The results are suggestive of the relevance of deep learning in providing assistive intelligence to medical practitioners, when they are overburdened with patients as in pandemics. Its clinical significance lies in its unprecedented scope in providing low-cost decision-making for patients lacking specialized healthcare at remote locations.
translated by 谷歌翻译
Neural Architecture Search (NAS) is an automatic technique that can search for well-performed architectures for a specific task. Although NAS surpasses human-designed architecture in many fields, the high computational cost of architecture evaluation it requires hinders its development. A feasible solution is to directly evaluate some metrics in the initial stage of the architecture without any training. NAS without training (WOT) score is such a metric, which estimates the final trained accuracy of the architecture through the ability to distinguish different inputs in the activation layer. However, WOT score is not an atomic metric, meaning that it does not represent a fundamental indicator of the architecture. The contributions of this paper are in three folds. First, we decouple WOT into two atomic metrics which represent the distinguishing ability of the network and the number of activation units, and explore better combination rules named (Distinguishing Activation Score) DAS. We prove the correctness of decoupling theoretically and confirmed the effectiveness of the rules experimentally. Second, in order to improve the prediction accuracy of DAS to meet practical search requirements, we propose a fast training strategy. When DAS is used in combination with the fast training strategy, it yields more improvements. Third, we propose a dataset called Darts-training-bench (DTB), which fills the gap that no training states of architecture in existing datasets. Our proposed method has 1.04$\times$ - 1.56$\times$ improvements on NAS-Bench-101, Network Design Spaces, and the proposed DTB.
translated by 谷歌翻译
Deep learning-based object detection is a powerful approach for detecting faulty insulators in power lines. This involves training an object detection model from scratch, or fine tuning a model that is pre-trained on benchmark computer vision datasets. This approach works well with a large number of insulator images, but can result in unreliable models in the low data regime. The current literature mainly focuses on detecting the presence or absence of insulator caps, which is a relatively easy detection task, and does not consider detection of finer faults such as flashed and broken disks. In this article, we formulate three object detection tasks for insulator and asset inspection from aerial images, focusing on incipient faults in disks. We curate a large reference dataset of insulator images that can be used to learn robust features for detecting healthy and faulty insulators. We study the advantage of using this dataset in the low target data regime by pre-training on the reference dataset followed by fine-tuning on the target dataset. The results suggest that object detection models can be used to detect faults in insulators at a much incipient stage, and that transfer learning adds value depending on the type of object detection model. We identify key factors that dictate performance in the low data-regime and outline potential approaches to improve the state-of-the-art.
translated by 谷歌翻译
Online Social Networks have embarked on the importance of connection strength measures which has a broad array of applications such as, analyzing diffusion behaviors, community detection, link predictions, recommender systems. Though there are some existing connection strength measures, the density that a connection shares with it's neighbors and the directionality aspect has not received much attention. In this paper, we have proposed an asymmetric edge similarity measure namely, Neighborhood Density-based Edge Similarity (NDES) which provides a fundamental support to derive the strength of connection. The time complexity of NDES is $O(nk^2)$. An application of NDES for community detection in social network is shown. We have considered a similarity based community detection technique and substituted its similarity measure with NDES. The performance of NDES is evaluated on several small real-world datasets in terms of the effectiveness in detecting communities and compared with three widely used similarity measures. Empirical results show NDES enables detecting comparatively better communities both in terms of accuracy and quality.
translated by 谷歌翻译
Community detection in Social Networks is associated with finding and grouping the most similar nodes inherent in the network. These similar nodes are identified by computing tie strength. Stronger ties indicates higher proximity shared by connected node pairs. This work is motivated by Granovetter's argument that suggests that strong ties lies within densely connected nodes and the theory that community cores in real-world networks are densely connected. In this paper, we have introduced a novel method called \emph{Disjoint Community detection using Cascades (DCC)} which demonstrates the effectiveness of a new local density based tie strength measure on detecting communities. Here, tie strength is utilized to decide the paths followed for propagating information. The idea is to crawl through the tuple information of cascades towards the community core guided by increasing tie strength. Considering the cascade generation step, a novel preferential membership method has been developed to assign community labels to unassigned nodes. The efficacy of $DCC$ has been analyzed based on quality and accuracy on several real-world datasets and baseline community detection algorithms.
translated by 谷歌翻译
Information diffusion in Online Social Networks is a new and crucial problem in social network analysis field and requires significant research attention. Efficient diffusion of information are of critical importance in diverse situations such as; pandemic prevention, advertising, marketing etc. Although several mathematical models have been developed till date, but previous works lacked systematic analysis and exploration of the influence of neighborhood for information diffusion. In this paper, we have proposed Common Neighborhood Strategy (CNS) algorithm for information diffusion that demonstrates the role of common neighborhood in information propagation throughout the network. The performance of CNS algorithm is evaluated on several real-world datasets in terms of diffusion speed and diffusion outspread and compared with several widely used information diffusion models. Empirical results show CNS algorithm enables better information diffusion both in terms of diffusion speed and diffusion outspread.
translated by 谷歌翻译